Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.

Identifieur interne : 001F97 ( Main/Exploration ); précédent : 001F96; suivant : 001F98

Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.

Auteurs : Jia-Jia Chen [Finlande] ; Jing Zhang ; Xin-Qiang He

Source :

RBID : pubmed:24111607

Descripteurs français

English descriptors

Abstract

Regeneration is a common strategy for plants to survive the intrinsic and extrinsic challenges they face through their life cycle, and it may occur upon wounding. Bark girdling is applied to improve fruit production or harvest bark as medicinal material. When tree bark is removed, the cambium and phloem will be peeled off. After a small strip of bark is removed from trees, newly formed periderm and wound cambium develop from the callus on the surface of the trunk, and new phloem is subsequently derived from the wound cambium. However, after large-scale girdling, the newly formed sieve elements (SEs) appear earlier than the regenerated cambium, and both of them derive from differentiating xylem cells rather than from callus. This secondary vascular tissue regeneration mainly involves three key stages: callus formation and xylem cell dedifferentiation; SEs appearance and wound cambium formation. The new bark is formed within 1 month in poplar, Eucommia; thus, it provides high temporal resolution of regenerated tissues at different stages. In this review, we will illustrate the morphology, gene expression and phytohormone regulation of vascular tissue regeneration after large-scale girdling in trees, and also discuss the potential utilization of the bark girdling system in studies of plant vascular development and tissue regeneration.

DOI: 10.1111/ppl.12112
PubMed: 24111607


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.</title>
<author>
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24111607</idno>
<idno type="pmid">24111607</idno>
<idno type="doi">10.1111/ppl.12112</idno>
<idno type="wicri:Area/Main/Corpus">002447</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002447</idno>
<idno type="wicri:Area/Main/Curation">002447</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002447</idno>
<idno type="wicri:Area/Main/Exploration">002447</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.</title>
<author>
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
<affiliation wicri:level="4">
<nlm:affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014</wicri:regionArea>
<orgName type="university">Université de Pékin</orgName>
<placeName>
<settlement type="city">Pékin</settlement>
<region type="capitale">Pékin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
</author>
</analytic>
<series>
<title level="j">Physiologia plantarum</title>
<idno type="eISSN">1399-3054</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (cytology)</term>
<term>Cambium (genetics)</term>
<term>Cambium (growth & development)</term>
<term>Cambium (physiology)</term>
<term>Cell Differentiation (MeSH)</term>
<term>Gene Expression Regulation, Developmental (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Phloem (genetics)</term>
<term>Phloem (growth & development)</term>
<term>Phloem (physiology)</term>
<term>Plant Bark (cytology)</term>
<term>Plant Bark (genetics)</term>
<term>Plant Bark (growth & development)</term>
<term>Plant Bark (physiology)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Vascular Bundle (cytology)</term>
<term>Plant Vascular Bundle (genetics)</term>
<term>Plant Vascular Bundle (growth & development)</term>
<term>Plant Vascular Bundle (physiology)</term>
<term>Regeneration (MeSH)</term>
<term>Trees (cytology)</term>
<term>Trees (genetics)</term>
<term>Trees (growth & development)</term>
<term>Trees (physiology)</term>
<term>Xylem (cytology)</term>
<term>Xylem (genetics)</term>
<term>Xylem (growth & development)</term>
<term>Xylem (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (cytologie)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Cambium (croissance et développement)</term>
<term>Cambium (cytologie)</term>
<term>Cambium (génétique)</term>
<term>Cambium (physiologie)</term>
<term>Différenciation cellulaire (MeSH)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Faisceau vasculaire des plantes (croissance et développement)</term>
<term>Faisceau vasculaire des plantes (cytologie)</term>
<term>Faisceau vasculaire des plantes (génétique)</term>
<term>Faisceau vasculaire des plantes (physiologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Phloème (croissance et développement)</term>
<term>Phloème (génétique)</term>
<term>Phloème (physiologie)</term>
<term>Régulation de l'expression des gènes au cours du développement (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régénération (MeSH)</term>
<term>Xylème (croissance et développement)</term>
<term>Xylème (cytologie)</term>
<term>Xylème (génétique)</term>
<term>Xylème (physiologie)</term>
<term>Écorce (croissance et développement)</term>
<term>Écorce (cytologie)</term>
<term>Écorce (génétique)</term>
<term>Écorce (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
<term>Phloème</term>
<term>Xylème</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
<term>Xylème</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Cambium</term>
<term>Plant Bark</term>
<term>Plant Vascular Bundle</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Plant Bark</term>
<term>Plant Vascular Bundle</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Plant Bark</term>
<term>Plant Vascular Bundle</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
<term>Phloème</term>
<term>Xylème</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de croissance végétal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Cambium</term>
<term>Faisceau vasculaire des plantes</term>
<term>Phloème</term>
<term>Xylème</term>
<term>Écorce</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cambium</term>
<term>Phloem</term>
<term>Plant Bark</term>
<term>Plant Vascular Bundle</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Differentiation</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Plant</term>
<term>Models, Biological</term>
<term>Regeneration</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Différenciation cellulaire</term>
<term>Modèles biologiques</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Régénération</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Regeneration is a common strategy for plants to survive the intrinsic and extrinsic challenges they face through their life cycle, and it may occur upon wounding. Bark girdling is applied to improve fruit production or harvest bark as medicinal material. When tree bark is removed, the cambium and phloem will be peeled off. After a small strip of bark is removed from trees, newly formed periderm and wound cambium develop from the callus on the surface of the trunk, and new phloem is subsequently derived from the wound cambium. However, after large-scale girdling, the newly formed sieve elements (SEs) appear earlier than the regenerated cambium, and both of them derive from differentiating xylem cells rather than from callus. This secondary vascular tissue regeneration mainly involves three key stages: callus formation and xylem cell dedifferentiation; SEs appearance and wound cambium formation. The new bark is formed within 1 month in poplar, Eucommia; thus, it provides high temporal resolution of regenerated tissues at different stages. In this review, we will illustrate the morphology, gene expression and phytohormone regulation of vascular tissue regeneration after large-scale girdling in trees, and also discuss the potential utilization of the bark girdling system in studies of plant vascular development and tissue regeneration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24111607</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>01</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>05</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1399-3054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>151</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Physiologia plantarum</Title>
<ISOAbbreviation>Physiol Plant</ISOAbbreviation>
</Journal>
<ArticleTitle>Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.</ArticleTitle>
<Pagination>
<MedlinePgn>147-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/ppl.12112</ELocationID>
<Abstract>
<AbstractText>Regeneration is a common strategy for plants to survive the intrinsic and extrinsic challenges they face through their life cycle, and it may occur upon wounding. Bark girdling is applied to improve fruit production or harvest bark as medicinal material. When tree bark is removed, the cambium and phloem will be peeled off. After a small strip of bark is removed from trees, newly formed periderm and wound cambium develop from the callus on the surface of the trunk, and new phloem is subsequently derived from the wound cambium. However, after large-scale girdling, the newly formed sieve elements (SEs) appear earlier than the regenerated cambium, and both of them derive from differentiating xylem cells rather than from callus. This secondary vascular tissue regeneration mainly involves three key stages: callus formation and xylem cell dedifferentiation; SEs appearance and wound cambium formation. The new bark is formed within 1 month in poplar, Eucommia; thus, it provides high temporal resolution of regenerated tissues at different stages. In this review, we will illustrate the morphology, gene expression and phytohormone regulation of vascular tissue regeneration after large-scale girdling in trees, and also discuss the potential utilization of the bark girdling system in studies of plant vascular development and tissue regeneration.</AbstractText>
<CopyrightInformation>© 2013 Scandinavian Plant Physiology Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jia-Jia</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China; Department of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Qiang</ForeName>
<Initials>XQ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Denmark</Country>
<MedlineTA>Physiol Plant</MedlineTA>
<NlmUniqueID>1256322</NlmUniqueID>
<ISSNLinking>0031-9317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002454" MajorTopicYN="N">Cell Differentiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024301" MajorTopicYN="N">Plant Bark</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058526" MajorTopicYN="N">Plant Vascular Bundle</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012038" MajorTopicYN="N">Regeneration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24111607</ArticleId>
<ArticleId IdType="doi">10.1111/ppl.12112</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
<region>
<li>Pékin</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
<orgName>
<li>Université de Pékin</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<name sortKey="Zhang, Jing" sort="Zhang, Jing" uniqKey="Zhang J" first="Jing" last="Zhang">Jing Zhang</name>
</noCountry>
<country name="Finlande">
<region name="Pékin">
<name sortKey="Chen, Jia Jia" sort="Chen, Jia Jia" uniqKey="Chen J" first="Jia-Jia" last="Chen">Jia-Jia Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24111607
   |texte=   Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24111607" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020